
Exadata

Presented by: Kerry Osborne February 23, 2012

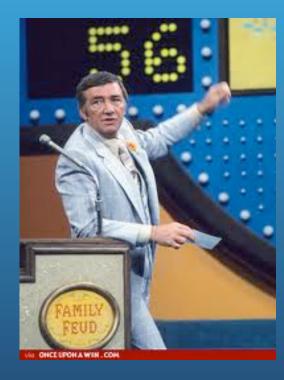
whoami -

Worked with Oracle Since 1982 (V2) Working with Exadata since early 2010 Work for Enkitec (<u>www.enkitec.com</u>) (Enkitec owns a Half Rack – V2/X2) Many Exadata customers and POCs Many Exadata Presentations (many to Oracle) Exadata Book

Blog: kerryosborne.oracle-guy.com

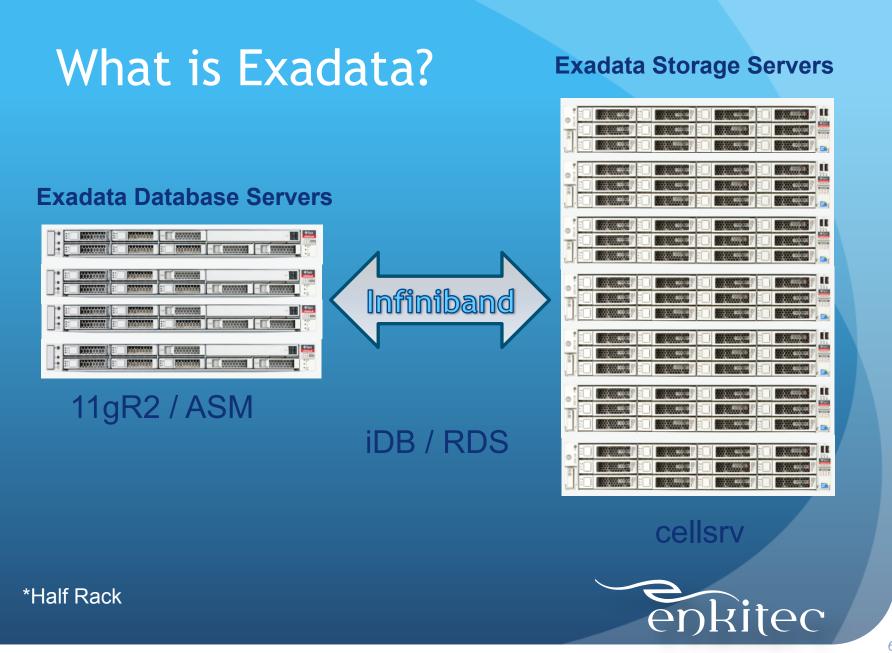
What's the Point?

Can we get near Exadata performance without buying an Exadata?



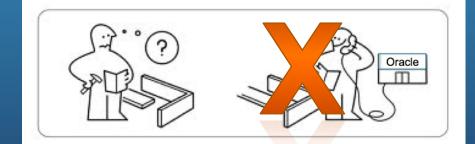
- Commodity Hardware
- Published Specs
- Specs are Easily Reproduced (or Exceeded)
- So the Question Comes Up Frequently ...

Note: This presentation was originally proposed as a session for OpenWorld 2010 by Kevin Closson.



Poll - Can You Get Exadata Like Performance w/o Buying an Exadata?

Yes – I think I can build a better mousetrap (for less money)
No – It absolutely cannot be done
Maybe – I think I might be able to get pretty close



What's the Plan?

Important Architectural Features

- Flash Cache
- Pipe (Infiniband)
- Compute Resources (CPU's)
- Total Storage
- Redundancy (RAC?)
- Manageability (Dial Home, ILOM, etc...)
- ... remember there are tradeoff's

Filling the Buckets*

Compute Capacity (cores) – 132 (48+84) Storage (TB Usable) ~ 80 (252 raw) Flash Cache (TB) ~ 2.6 Pipe (Gb/s) – 40 Redundancy ? Manageability ? Cost ?

*Half Rack

First Iteration

Copy Exadata Specs

P

4 - Sun
16 - 8G
EMC VNX
40 - 20
84 - 7

Servers (need **4270**'s due to PCIe slots) a Switch leed to step up to VMAX) ast Cache (need **20** due to RAID 1) Prives

But We're Already Off in the Weeds!

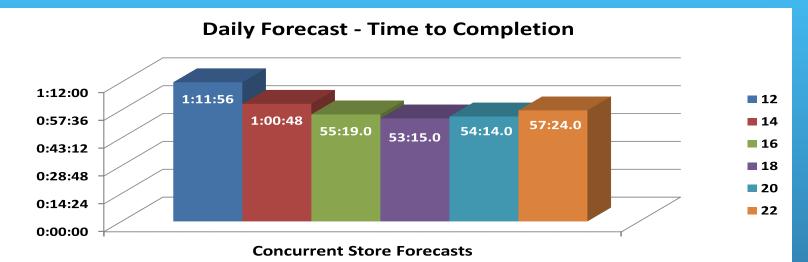
And we're not accounting for additional CPU's on storage tier.

Storyville

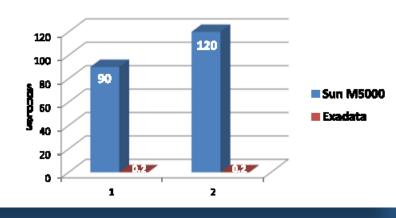
Imagine a system that spends 4.5 hours every night doing a batch update of a Billion+ row table – one row at a time.

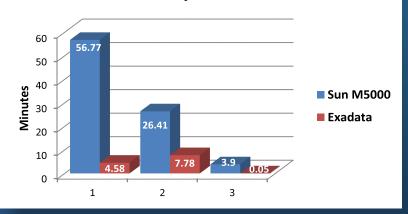
Which buckets are most important?

- Storage?
 - Capacity
 - Throughput
 - Latency
- Pipe?
- CPU?
- Memory?



High Performance: Large Scale Retail Comparison


Customer Environment	Enkitec Exadata	
32 Core (RISC) Max RAM	Environment Quarter Rack	
Solid State SAN	- 16 Core Intel	
Test 1 - Nightly Forecast	Test 1 - Nightly Forecast	
4 Concurrent Stores	18 Concurrent Stores	
Execution Time: 4.5 hours	Execution Time: 53 Minutes	
Test 2 - PO Build Plan	Test 2 - PO Build Plan	
Execution Time: 120 seconds each	Execution Time: 0.2 seconds	
Test 3 - Ad Hoc Queries	Test 3 - Ad Hoc Queries	
56 minutes	4.5 minutes	
27 minutes	8 minutes	
4 minutes	3 seconds	


High Performance: Large Scale Retail Overview

Purchase Order Build Time

Ad Hoc Query Execution Time

Customer Decided to Pursue DIY Route -

No redundancy Not enough storage Did get write back cache Long Running Queries still take a while But Not Bad!

DIY Results:

Batch Job: ~ 50 minutes 56 Min Query: ~ 15 minutes

Costs:

hardware roughly the same as half rack Oracle software quite a bit less

Third Iteration

Lots O' CPU & A (Y) **Big Pipe**

- 2 Sun Fire 00 Se • 4 – QDR Infin • Sun ZFS 7320 • 2TB Read (

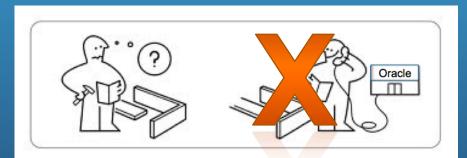
 - 4 trays o
 - per Jame
 - also su ts HC

(plenty of CPU, memory, PCIe) s and switch(es)

2K, 3T Drives

ve can use RDMA

Getting close, but what's it going to cost?



Digression: Got Balance?

- DB Grid must generate I/O requests
 - Generating I/O requests require CPU
- Storage must be able to deliver the I/O
 - Need enough devices, etc...
- Transport mechanism must be adequate
- DB Grid must ingest the I/O
 - Consuming I/O requires CPU

Basic idea is that we must be able to consume what is produced.

Hardware Conclusion

- Exadata Architecture Provides a Roadmap
 - Flash Based Storage
 - Big Pipes (Infiniband)
 - Low Latency (RDMA)
 - RAC Provides Ability to Scale Out
- Unlikely that you can build it for anywhere near the cost
- But you can probably build something adequate for specific WL's

Hardware is only half the story:

Remember:

- CPU's on Storage Cells Can Be Used For DB Processing
- So We Need More CPU on DB Servers To Compensate
- And the associated DB/RAC licensing costs
- We May Also Need More DB Server Memory
- All Because of the Storage Software

The Big Ah Ha!

The Bottleneck on Many (Most) Large Databases is between the Disk and the DB Server(s)!

How to Speed Up?

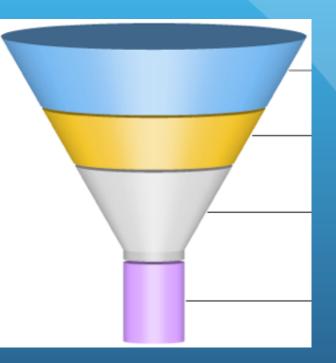
Make the Pipe Bigger/Faster Reduce the Volume

* The fast way to do anything is not to do it!

Offloading - The "Secret Sauce"

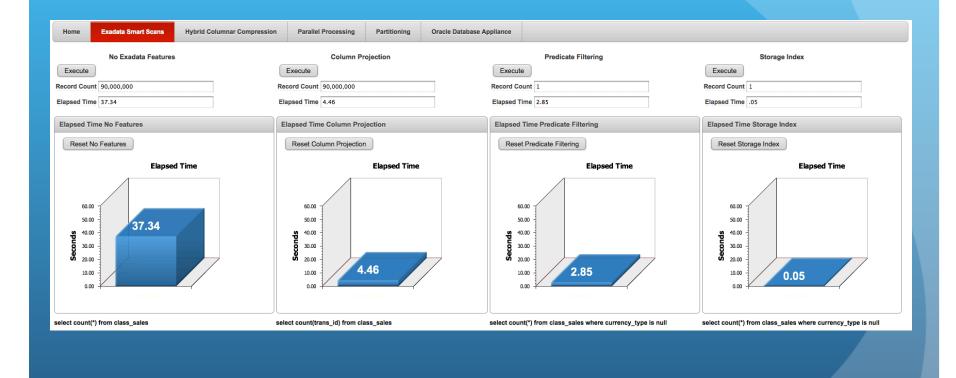
Offloading vs. Smart Scan (what's the difference)

Offloading – generic term meaning doing work at the storage layer instead of at the database layer


Smart Scan – query optimizations covered by "cell smart table/index scan" wait events

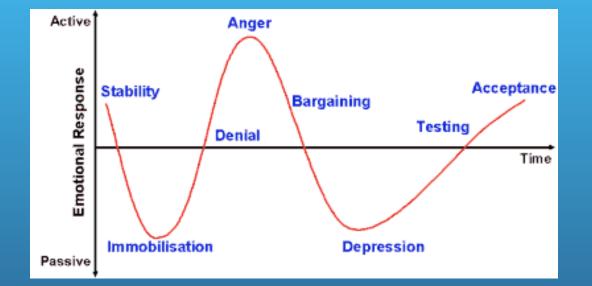
Smart Scan Optimizations

Column Projection Predicate Filtering Storage Indexes Simple Joins Function Offloading Virtual Column Evaluation HCC Decompression Decryption



Demo Time

Exadata Software Performance



High Transaction Volume: Telco Provider

- Customer Runs Dell, 16 Core Machines in Multiple RAC Instances
- Very High Volume of OLTP and Data Warehouse Type Queries on Same Database
- Performance Differences Were Too Excessive to Graph

SQL	Current	Exadata	Times Faster
Process 1: 6-Month Data Volume	52 min	19.5 sec	160 x
Process 2: 3-Month Data Volume	51 min	11.5 sec	269 x
Process 3: 1-Year Data Volume	50 min	37.5 sec	81 x
Process 4: 2-Month Data Volume	48 min	9.4 sec	308 x
Update SCN_CALL_PARTY_LOG	13 min	1.05 sec	744 x
Update SCN_CALL_PARTY_IDENT_LOG	7 min	.23 sec	1871 x
Select SCN_CALL_PARTY_EXTDATA_LOG	6.75 min	.47 sec	868 x

The Kübler-Ross grief cycle

Exposure to Exadata

Questions?

Contact Information : Kerry Osborne kerry.osborne@enkitec.com kerryosborne.oracle-guy.com www.enkitec.com

Specialized Exadata

