
Understanding Exadata Offloading

Exadata Query
Optimizations
Enabled by
Smart Scans

whoami –

Work for Enkitec (www.enkitec.com)
Working with Exadata since early 2010
Many Exadata customers and POCs (40+)
Many Exadata Presentations (some to Oracle)
Coauthor Expert Oracle Exadata Book

(kerryosborne.oracle-guy.com)

whoami – (my prejudices)

I am an Exadata Fan Boy
– so please take everything I say with a grain of salt

Agenda

Exadata Basics
Offloading / Smart Scans
 - Optimizations
 - Requirements
 - How to tell if it’s working ***this is very important***
Demo
Questions

Exadata Storage Servers Exadata Database Servers

Exadata Basics

11gR2 / ASM
iDB / RDS

cellsrv

The Big Ah Ha!

The Bottleneck on Many (Most) Large
Databases is between the Disk and the
DB Server(s)!

How to Speed Up?

 Make the Pipe Bigger/Faster
 Reduce the Volume

* The fast way to do anything is not to do it ~ Cary Millsap

Offloading – The “Secret Sauce”

Offloading vs. Smart Scan
(what’s the difference)

Offloading – generic term meaning doing
work at the storage layer instead of at the
database layer

Smart Scan – query optimizations covered
by “cell smart table/index scan” wait events

Smart Scan Optimizations

 Column Projection
 Predicate Filtering
 Storage Indexes
 Simple Joins
 Function Offloading
 Virtual Column Evaluation
 HCC Decompression
 Decryption

You can Tune an Exadata (but not a fish)

Check to see if you’re getting
Smart Scans!

If you’re not, figure out why
and correct the situation!

It’s Pretty Simple.

3 things you’ll need to know:

•  the Optimizations
•  the Requirements
•  how to Measure

Smart Scan Requirements

 Full Scan
 Direct Path Read
 Object Stored On Exadata Storage

 Why?

Very Simple Explanation:

 Various full scan functions()
 - kcbldrget() – direct path read function
 - kcfis_read() – kernel file intelligent storage read (Smart Scan)

*why it’s there: checkpointing and non-block data return

Requirement 1: Full Scans

•  Table
•  Partition
•  Materialized View
•  Index (FAST FULL SCAN Only)

SYS@shareprd1> @op_event_awr.sql!
Enter value for event: cell smart%!

EVENT OPERATION COUNT(*)!
-------------------------- -- ----------!
cell smart index scan INDEX STORAGE FAST FULL SCAN 124!
 INDEX STORAGE SAMPLE FAST FULL SCAN 234!

cell smart table scan MAT_VIEW ACCESS STORAGE FULL 1!
 TABLE ACCESS STORAGE FULL 27747!

* Query from DBA_HIST_ACTIVE_SESS_HISTORY

Digression - New Exadata Wait Events

cell list of blocks physical read – (db file parallel read)
cell multiblock physical read – (db file scattered read)
cell single block physical read – (db file sequential read)
cell smart file creation
cell smart incremental backup
cell smart index scan
cell smart restore from backup
cell smart table scan

* Note that there are others, these are the most interesting

Requirement 2: Direct Path Reads

Bypass buffer cache – direct to PGA
Decision not part of optimizer’s job
Traditionally Used by Parallel Slaves
Non-Parallel Also Possible

 - Serial Direct Path Reads (adaptive)
 - algorithm not documented (but more aggressive in 11g) *
 - size of segment (table or index or partition)
 - size of buffer cache
 - number blocks already in buffer cache
 - _small_table_threshold
 - _very_large_table_threshold

* See MOS Note: 50415.1 - WAITEVENT: "direct path read" Reference Note

Requirement 3: Exadata Storage

Kind of Goes Without Saying

•  Possible to have non-Exadata storage or mixed
•  ASM Diskgroup has an attribute: cell.smart_scan_capable
•  Must be set to TRUE for Smart Scans to work
•  Can’t add non-Exadata storage without changing to FALSE

How NOT to Tell if You got a Smart Scan

PLAN_TABLE_OUTPUT
--
SQL_ID 35tqjjq5vzg4b, child number 0

select count(*) from kso.temp_skew where col1_plus_pk=27998244

Plan hash value: 725706675

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT				44692 (100)	
1	SORT AGGREGATE		1	6		
* 2	TABLE ACCESS STORAGE FULL	TEMP_SKEW	2	12	44692 (1)	00:08:57
--

Predicate Information (identified by operation id):

 2 - storage("COL1"+"PK_COL"=27998244)
 filter("COL1"+"PK_COL"=27998244)

-- Explain Plan Output

* STORAGE keyword - means Smart Scans are possible, not guaranteed

How to Tell if You got a Smart Scan

Millsap It!
 – (10046 trace)
 – most fool proof?

TP It!
 – Tanel’s snapper
 – v$sesstat, v$session_event
 – great if it’s happening now

KO It!
 – My fsx.sql script
 – V$SQL family of views: IO_CELL_OFFLOAD_ELIGIBLE_BYTES
 – saved in AWR so works on historical data as well

Wolfgang It!
 – unfortunately this doesn’t work
 – 10053 trace (and the optimizer) has no idea

Rahn It!
 - DBMS_SQLTUNE.REPORT_SQL_MONITOR
 - probably best

How to Tell if You got a Smart Scan

-- fsx.sql

select sql_id,
 decode(IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0,’No’,’Yes’) Offloaded,
 decode(IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0,0,
 100*(IO_CELL_OFFLOAD_ELIGIBLE_BYTES-
 IO_INTERCONNECT_BYTES)/
 IO_CELL_OFFLOAD_ELIGIBLE_BYTES) "IO_SAVED_%”
 from v$sql
 where sql_text like ‘&sql_text’;

* Warning: there are occasions where it’s weird (negative IO_SAVED_%)

How to Tell if You got a Smart Scan

-- report_sql_monitor.sql

select DBMS_SQLTUNE.REPORT_SQL_MONITOR(
 session_id=>nvl('&&sid',sys_context('userenv','sid')),
 session_serial=>decode('&&sid',null,null,sys_context('userenv','sid'),
 (select serial# from v$session where audsid = sys_context
 ('userenv','sessionid')),null),
 sql_id=>'&sql_id',
 sql_exec_id=>'&sql_exec_id',
 report_level=>'ALL')
as report
from dual;

The Wrong Tool for the Job?

Maybe:

Any of the tools can do the
job. Just depends on the
circumstance and you’re
preferences.

Demo Time

Last Thoughts

Take Some Time to Test

•  Just Because You Can Slam it in Doesn’t Mean You Should

Take Some Time to Understand the Exadata Optimizations

•  Know What to Expect

Take Some Time to Evaluate Indexes

•  Migration is a Golden Opportunity to Get Rid of Some
•  Make Sure the Ones You Keep Aren’t Overused

Questions / Contact Information

Questions?

Contact Information : Kerry Osborne

kerry.osborne@enkitec.com
kerryosborne.oracle-guy.com

www.enkitec.com

