it

Controlling Execution Plans - 2014

(without touching the code)

Because there
are just some
things that no
one wants to
touch!

by Kerry Osborne

- an oldish Oracle guy

it

whoami

Started working with Oracle in 1982 (version 2)
Work for Enkitec (now part of Accenture)
Never worked directly for Oracle

Not certified in anything (except Scuba Diving)
Exadata Fan Boy

Hadoop Aficionado
Enkitec owns 3 Exadata’s, BDA, Exalytics, several ODAs, etc...

Blog: kerryosborne.oracle-guy.com

i

Pro

Expert

Oracle SQL Oracle

OakT@le.ne‘

c A | ORACLE Bacgs

ACE Director

Top Secret Feature of Oracle’s BDA

enkitec

What’s the Point?

Majority of Performance Issues Related to Bad Plans
Many Can Be Improved Without Changing SQL
Techniques Are Still Not Well Understood

Can Provide Instant Relief

Closest Thing to Magic I've Ever Seen

it

Reasons for Bad Plans?

The Optimizer is Complex ...
... and We Don’t Understand it Well Enough!

 Bad Code

« Bad Stats

« Bad Parameters — m\
The Optimizer is not perfect ... @ @

* Not Smart Enough (Yet)
e Too Clever for it's Own Good! <

it

Why is there so much “bad” code?

SQL is a very very very high level language

- Actually it’s closer to a software spec than a program
- Basically only the result is defined (I’'m stretching here)
- But many many implementation decisions are left to the DB
- the most import input is the statistics
- lots of parameters as well (many affect the optimizer)
- 347 in 11.2.0.3 on linux
- 2752 if you count the hidden ones
- Over 3000 in 12c

- It can be like giving instructions to my kids

O B M ., S T . WO A A Nl

- Sometimes it's Not Ours to Fix (i.e. packaged application)
- Sometimes there’s Not Enough Time

- it's an emergency

- onerous change control (adding to_date function)
- Sometimes it's Not the Code!

it

Predictability

In the good old days, life was simple

The RBO only had a handful of options
The CBO was introduced in Version 7
Plan Stability feature was introduced in 8i

it

Plan Instability

Sometimes the Optimizer Just Can’t
Seem to Make Up It's Mind!

Several Contributors:

« Cardinality Feedback
« Stats
 And My Favorite

— Bind Variable Peeking

it

Digression — Bind Variable Peeking

Drives Me Nuts!

BUG FEATURE

it

Improvements in 11g and 12c

11g - Adaptive Cursor Sharing (ACS)
Attempts to solve the BVP issue
Unfortunately — has to run badly at least once
Fortunately — multiple plans can exist
Unfortunately — bind sensitivity not persisted

12c — Adaptive Optimization
Attempts to fix on the fly
Attempts to persist

it

So What Can We Do?

it

Some Possible Solutions?

Change Database Parameters (Big Knob Tuning)
Add additional access paths (Indexes)

Remove some access paths

Monkey with Stats

problem with these
approaches —

they are very
nonspecific

it

Or We Can Use Hints Behind the Scenes

As of 11g there are 4 options (that I’'m aware of)
Outlines (aka Plan Stability)
SQL Profiles (SQL Tuning Advisor)
SQL Patches (SQL Repair Advisor)
SQL Baselines (SQL Plan Management)

Each was created with a Different Goal

But they all work basically the same way

They each apply a set of hints behind the scenes
Each iteration has added something new to the mix

it

Just to be Clear

These are not plans

They are sets of hints

They are assigned a name

And attached to a single SQL
- or possibly a set of SQL statements
- in the case of SQL Profiles

None of these objects “lock” plans

They do reduce the optimizer’s options

it

Where Hint Based Mechanisms Work Well

A Few Statements with “Bad” plans
Plan Instability (bind variable peeking)
Fixing optimizer shortcomings (correlated columns)
Band Aids

Note that they can have
laser like specificity.

(I know it’s a big word!)

it

Where They Don’t Work Well

Anywhere there are lot’s of problems
Lot’s of statements that have “Bad” plans
Systemic Problems

Anywhere that the structure of a query needs to change
Unions that should have been joins ...
Sub-queries (subquery factoring for example) ...

Select coll from skew where col2 = ‘D’ Select coll from kso.skew
Union all where col4 in ('D' , 'E', 'Y'");
Select coll from skew where coll2 = ‘E’

Union all

Select coll from skew where coll2 = ‘U’;

it

Stored Outlines

Half Baked
Goal was to “lock” plans
Not enabled in any version by default
Requires setting use_stored_outlines=true
Sadly use_stored_outlines is not a real parameter
Requires database trigger to enable them on startup
Invalid hints are silently ignored
There was an editor for a brief period
Can Exchange Hints ala MOS Note 92202.1 (8i)
10g added DBMS_OUTLN.CREATE_OUTLINE procedure
Outlines still work in 11g — but “deprecated”
Overrides (disables) Profiles, Patches and Baselines
Still uses hash_value instead of sql_id
Uses Categories (DEFAULT)

it

SQL Profiles

% Baked
Goal was to apply statistical fixes
Created by SQL Tuning Advisor (dbms_sqltune)
Using semi-undocumented OPT_ESTIMATE hint
Enabled by default
* Can apply to multiple statements (force_matching)
Invalid hints silently ignored
Stored in SMB like SQL BASELINES (in 119)
* Provides procedure to import hints (import_sql_profile)
Capable of applying any valid hints (I think)
Uses Categories (DEFAULT)

enkitec

SQL Tuning Advisor (STA) Profiles

So, a SQL profile is sort of like gathering statistics on A QUERY -
which involves many tables, columns and the like....

In fact - it is just like gathering statistics for a query, it stores
additional information in the dictionary which the optimizer uses at
optimization time to determine the correct plan. The SQL Profile is not
"locking a plan in place”, but rather giving the optimizer yet more bits
of information it can use to get the right plan.

~ Tom Kyte

enkitec

OPT_ESTIMATE Hint

Applies Fudge Factors
- basically scales an optimizer calculation (up or down)
- valid (though undocumented) hint

OPT_ESTIMATE (@"SEL$5DA710D3", INDEX FILTER, "F"Q"SEL$1", IDX$$_1AA260002, SCALE ROWS=8.883203639e-06)
OPT ESTIMATE (@"SEL$5DA710D3", INDEX SKIP SCAN, "F"Q@"SEL$1", IDX$$ 1AA260002, SCALE ROWS=8.883203639e-06)
OPT_ESTIMATE (@"SEL$5DA710D3", JOIN, ("B"Q"SEL$1", "A"@"SEL$1"), SCALE_ROWS=4.446153275)

OPT_ESTIMATE (@"SEL$5DA710D3", JOIN, ("C"Q"SEL$1l", "A"@"SEL$1"), SCALE_ROWS=7.884506683)

OPT_ESTIMATE (@"SEL$5DA710D3", JOIN, ("E"@Q"SEL$1", "A"@"SEL$1"), SCALE ROWS=25.60960842)

OPT_ESTIMATE (@"SEL$5DA710D3", JOIN, ("F"Q"SEL$1l", "B"@"SEL$1"), SCALE_ROWS=26.34181566)

OPT_ESTIMATE (@"SEL$5DA710D3", JOIN, ("F"Q"SEL$1", "B"@"SEL$1", "A"@"SEL$1"), SCALE_ROWS=839.9683673)

OPT ESTIMATE (@"SEL$5DA710D3", TABLE, "D"Q"SEL$1", SCALE ROWS=5.083144565e+11)

OPT_ESTIMATE (@"SEL$5", INDEX SCAN, "C"Q"SEL$5", ORDER FG_ITEM IX3, SCALE ROWS=0.2507281101)

HINT SUBTYPE COUNT (*)
OPT_ESTIMATE INDEX FILTER 12
OPT_ESTIMATE INDEX SCAN 32
OPT_ESTIMATE INDEX SKIP_ SCAN 23
OPT_ESTIMATE JOIN 154

OPT_ESTIMATE TABLE 29

it

STA Profiles (with OPT_ESTIMATE)

Goal appears to be applying statistical fix
Primarily using semi-undocumented OP

| am really not a big fan, because ...
... they tend to “sour” over time

But they have redeeming qualities ...
1. Good for indicating where the optimi
2. Good for finding new plans (which ca
3. Maybe good for optimizer shortcomi

But ...
They tend to “sour” over time!

enkitec

Issue Acknowledged in Docs

If the environment or SQL profile change, then the optimizer can create a new plan. As
tables grow or indexes are created or dropped, the plan for a profile can change. The
profile continues to be relevant even if the data distribution or access path of the
corresponding statement changes. In general, you do not need to refresh SQL profiles.

Over time, profile content can become outdated. In this case, performance of the SQL
statement may degrade. The statement may appear as high-load or top SQL. In this
case, the Automatic SQL Tuning task again captures the statement as high-load SQL.
You can implement a new SQL profile for the statement.

19-2 Oracle Database SQL Tuning Beta Draft

enkitec

Other STA Profile Hints

SQL> @sql_profile distinct_hints
Enter value for profile name: SYS SQLPROF%

HINT COUNT (*)
COLUMN_STATS 13
FIRST ROWS 1
IGNORE_OPTIM EMBEDDED_ HINTS 1
INDEX_ STATS a 1
OPTIMIZER FEATURES_ENABLE 14
OPT_ESTIMATE 178
TABLE_STATS 2

SYSQLAB112> @sql_profile hints
Enter value for profile name: SYS_SQLPROF 0126£1743c7d0005

COLUMN_STATS ("KSO"."SKEW", "PK _COL", scale, length=5)

COLUMN_STATS ("KSO"."SKEW", "COLl", scale, length=4 distinct=828841 nulls=12.8723033 min=1 max=1000000)
TABLE_STATS("KSO"."SKEW", scale, blocks=162294 rows=35183107.66)

OPTIMIZER_FEATURES_ENABLE(default)

enkitec

IMPORT_SQL_PROFILE

Part of the DBMS_SQLTUNE Package

10.2 definition:

PROCEDURE IMPORT_SQL PROFILE

Argument Name Type In/Out Default?
SQL_TEXT CLOB IN

PROFILE SQLPROF ATTR IN

NAME VARCHAR2 IN DEFAULT
DESCRIPTION VARCHAR2 IN DEFAULT
CATEGORY VARCHAR2 IN DEFAULT
VALIDATE BOOLEAN IN DEFAULT
REPLACE BOOLEAN IN DEFAULT
FORCE_MATCH BOOLEAN IN DEFAULT

SQL> desc sqlprof_attr
sqlprof_attr VARRAY (2000) OF VARCHAR2 (500)

Note: part of tuning pack — (i.e. extra cost option)

it

SQL Patches

% Baked
Goal was to modify plans to avoid errors
Created by SQL Repair Advisor (dbms_sqldiag)
Enabled by default
No force_matching
Invalid hints silently ignored
Stored in SMB like SQL BASELINES (in 11g)
Provides procedure to import hints (i_create_patch)
Showed up in 10g (but funky — created SQL Profiles)
Capable of applying any valid hints
Uses Categories (DEFAULT)
Hints can be merged with Profiles and Baselines
Basically a 1 Hint SQL Profile

* https:/Iblogs.oracle.com/optimizer/entry/how_can_i_hint_a

enkitec

SQL Patches

In 11.2.0.3
SQL ID <c79q8y75rh36sc, child number 1

select /* test */ avg(pk_col) from kso.skew where coll = 23489

Plan hash value: 3723858078

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT				36 (100)	
1	SORT AGGREGATE		1	11		
2	TABLE ACCESS BY INDEX ROWID	SKEW	35	385	36 (0)	00:00:01
1* 3| INDEX RANGE SCAN | SKEW_COL1 | 37 | | 3 (0)| 00:00:01 |

- SQL profile PROF_c7q8y75rh36sc_3723858078 used for this statement
- SQL patch "KSO_c798y75rh36sc_MANUAL" used for this statement
- SQL plan baseline SQLID C7Q8Y75RH36SC_3723858078 used for this statement

it

SQL Baselines

Fully Baked (almost)
Goal was to prevent performance regression
(Closer to Outlines than to SQL Profiles)
Enabled by default in 11g (optimizer_use_sql_plan_baselines)
Capable of applying any valid hints
* Has associated plan_hash_value
Invalid hints are NOT silently ignored!
Provides procedure to import plans
(DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE)
Overridden by Outlines
Can work with Profiles and Patches (merges hints)

* Can have multiple Baselines per statement
No Categories

Preferred Set (fixed=yes)

it

SQL Plan Management

Introduced in 11g
The Idea is to Prevent Backward Movement
New Framework using Baselines

SPM is On by default (sort of)

optimizer_use_sql_plan_baselines=true
But no plans are Baselined by default
Baselines can be bulk loaded
From a SQL Tuning Set (10g)
From Outlines
From the cursor cache
Via optimizer_capture_sql_plan_baselines=true

enkitec

SQL Plan Management — Hard Parse

SQL stmt is issued

v

Generate execution plan

Does a

SQL plan
baseline
exist

Is this
planin
SQL plan
baseline

Execute Plan

Execute Queue new plan for verification
this plan l

Execute known baseline plan

enkitec

SQL Plan Management

So what’s actually stored?
« A plan hash value (calculated differently than v$sql)
Hints to reproduce the plan
Signature (no sql_id)
The actual plan is not stored in 11g
Plan stored in 12¢c
* but only so XPLAN can display it

SYS@LAB111l> select spb.sql_handle, spb.plan name, spb.sql_text,
2 spb.enabled, spb.accepted, spb.fixed,
3 to_char(spb.last_executed, 'dd-mon-yy HH24:MI') last executed
4 from
5 dba_sql_plan baselines spb;

SQL HANDLE PLAN NAME SQL TEXT ENABLED ACC FIX LAST_ EXECUTED
SYS_SQL 36bflc88f777e894 SYS SQL PLAN f777e89455381d08 select avg(pk_col) f YES YES NO 27-oct-09 10:20
SYS_SQL £2784d83cl974f5e SYS_SQL PLAN c1974f5e54680e33 select avg(pk_col) f YES YES NO 27-oct-09 11:12

SYS_SQL £2784d83cl974f5e SYS_SQL PLAN cl1974£f5e55381d08 select avg(pk_col) f YES NO NO

it

So Which Is Most Useful?

And the Survey Says:

Profiles — No. 1 Answer
Baselines — No. 2 Answer

Why?

Profiles
dbms_sqltune.import_sql_profile
force_matching
10g

Baselines
plan_hash_value
multiple plans
*no procedure to import hints
*no force_matching
*less stable (throws out all hints)

Please Be Careful
These Techniques Can Be Addictive
Think of them as Band Aids

enkitec

Shared Pool Layout (V$SQL...)

Sql_Id
Sql_Text
Sql_Fulltext V$SQLAREA

(various stats)

Identifying the statement of
interest. V$SQL_PLAN

Note: prior to 10g hash_value used as key (no sql_id)

Sql_ld

Child_Number
Plan_Hash_Value
Outline_Category
Sql_Profile

Sql_Patch
Sql_Plan_Baseline
Exact_Matching_Signature
Force_Matching_Signature

Sql_ld

Child_Number
Plan_Hash_Value

Id (step)

Operation

Options

Object_Name
Other_XML (ID 1 usually)

enkitec

Finding Statements in the Shared Pool

SQL> !'cat find sql.sql

select sql_id, child number, plan_hash value plan_hash, executions execs,
(elapsed time/1000000) /decode (nvl (executions,0) ,0,1,executions) avg etime,
disk_reaas/decode(nvl(executions,O),0,1,executions) avg_pio, -
buffer_gets/decode(nvl(executions,O),0,1,executions) avg_lio,

sql_text

from v$sql s

where upper (sql_text) like upper (nvl('&sql_text', sql_text))

and sql_text not like '%from v$sql where sql_text like nvl (%'

and sql_id like nvl('é&sql_id',sql_id)

order by 1, 2, 3

/

SQL> @find_sql
Enter value for sql_text: %skew$
Enter value for sql_id:

SQL_ID CHILD PLAN HASH EXECS AVG ETIME AVG_LIO SQL_ TEXT

0ga98gcnnza7h 0 568322376 5 13.09 142,646 select avg(pk_col) from kso.skew where coll > 0
0ga98gcnnza7h 1 3723858078 1 9.80 2,626,102 select avg(pk_col) from kso.skew where coll > 0

enkitec

Finding Plans for Statements in the Shared Pool

SQL> 'cat dplan.sql

set lines 150

select * from table(dbms_xplan.display cursor('é&sql_id', '&child no', 'typical'))
/

SQL> @dplan
Enter value for sql_id: 0ga98gcnnza7h

Enter value for child no: 0

PLAN TABLE OUTPUT

select avg(pk_col) from kso.skew where coll > 0

Plan hash value: 568322376

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

0	SELECT STATEMENT				31719 (100)	
1	SORT AGGREGATE		1] 11			
* 2	TABLE ACCESS FULL	SKEW	32M	335M	31719 (37)	00:00:43

2 - filter ("COL1">0)

it

Explain Plan - Lies

SQL> explain plan for select ...
SQL> select * from table(dbms_xplan.display('plan_table’,",'ALL"));

It tells you what it thinks the optimizer might do ...
assuming the environment is the same as production
assuming that bind variable peeking doesn’t come into play
etc...

(note: autotrace uses explain plan too)

The best liar is one that tells the truth most of the time.

Google for “Explain Plan Lies” for more info

it

Other Useful Metadata Info

Views:
- DBA_OUTLINES (outin.ol$)
- DBA_SQL_PROFILES (sqlobj$)
- DBA_SQL_PLAN_BASELINES (sqlobj$)
- DBA_SQL_PATCHES (sqlobj$)

Of Course V$SQL has the following:
* OUTLINE_CATEGORY
- SQL_PROFILE
« SQL_PATCH
- SQL_PLAN_BASELINE

enkitec

Hints are stored for every statement: OTHER XML

SYS@LAB112> Qother xml
SYSQLAB112> select other xml from v$sql plan
2 where sql_id like nvl('&sql id', sql_id)
3 and child number like nvl('&child number', child number)
4 and other xml is not null
5 /
Enter value for sql_id: 2gs798n2y7]j76
Enter value for child number: 0

OTHER_XML

<other xml><info type="db_version">11.2.0.1</info><info type="parse schema"><![C
DATA["SYS"]]></info><info type="plan hash">1946853647</info><info type="plan has
h 2">28316188</info><peeked binds><bind nam=":N2" pos="1" dty="1" csi="178" frm=
"1l" mxl="32">4e</bind></peeked binds><outline data><hint><! [CDATA[IGNORE OPTIM E
MBEDDED HINTS]]></hint><hint><![CDATA[OPTIMIZER FEATURES ENABLE('11.2.0.1')]]></
hint><hint><! [CDATA[DB VERSION('11.2.0.1')]]></hint><hint><! [CDATA[ALL ROWS]]></
hint><hint><! [CDATA[OUTLINE LEAF (Q"SEL$1")]]></hint><hint><! [CDATA[INDEX RS ASC (
@"SELS$S1" "SKEW"Q@"SELS1" ("SKEW"."COL4"))]]></hint></outline_data></other_xml>

1l row selected.

enkitec

Easier on the Eyes: SQL_HINTS.SQL

SYS@LAB112> @sql_hints
SYSQLAB112> select
2 extractvalue(value(d), '/hint') as outline_hints
3 from
4 xmltable('/*/outline data/hint’
5 passing (

6 select
7 xmltype (other xml) as xmlval
8 from

9 v$sql_plan

10 where

11 sql_id like nvl('&sql_id', sql_id)

12 and child number = &child no

13 and other:ﬁml is not null

14)

15) d;
Enter value for sql_id: 84q0zxfzn5u6s
Enter value for child no: 0

OUTLINE_HINTS

IGNORE_OPTIM EMBEDDED HINTS

OPTIMIZER FEATURES ENABLE ('11.2.0.1')
DB_VERSION('11.2.0.1')

ALL_ROWS

OUTLINE_LEAF (@"SEL$1")

FULL (Q@"SEL$1" "SKEW"Q"SEL$1")

6 rows selected.

it

A Few Words on Hints!

They are finicky!

They are not particularly well documented!

If you get it wrong, they are silently ignored! (grrrrrr!)
Aliases are important!

Query Block Names are important!

New Complex Index Hint Format can be confusing!

I’d really love to have an option (maybe a hidden parameter) to see a
warning when a hint is invalid or has incorrect syntax or is not able to
work for any reason.

it

A Few Words on Query Block Names

They are finicky!
They are not particularly well documented!
If you get it wrong, they are silently ignored (grrrrrr!)

Default QB Names look like SEL$1, DEL$1, UPD$1, SEL$2 ...
Can be named using the gb_name hint (seldom used)
Probably best to look at existing hints (v$sql_plan.other_xml)

INDEX_RS_ASC(@"SEL$1" "A"@"SEL$1" ("SKEW"."COL4” “SKEW”.”COL3"))

Translation

Index_Hint (@QB_Name Alias (Column, ...))

You can observe a lot by watching. ~ Yogi Bera

enkitec

dbms_xplan — alias format option

SYSQ@LAB112> !'cat dplan_alias.sql

set lines 150

select * from table(dbms_xplan.display cursor('&sql_id', 'é&child no','alias'))
/

SYSQ@LAB112> @dplan_alias

Enter value for sql_id: 84q0zxfznSué6s

Enter value for child no:

PLAN_TABLE_OUTPUT

select avg(pk_col) from kso.skew where coll = 136133
Plan hash value: 568322376
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

0 | SELECT STATEMENT | |
| 1 | SORT AGGREGATE | | 1 24 | | |
2 | TABLE ACCESS FULL| SKEW | 35 | 840 | 28360 (1) 00:05:41 |

1 - SEL$1
2 - SEL$1 / SKEW@SELS$1

Predicate Information (identified by operation id):

2 - filter("COL1"=136133)

enkitec

SQL Profile Secret Sauce

The Main Ah Ha:

simport_sqgl_profile can be used to manually
create a SQL Profile with any hints

Closely related concept:

«<outline_data> from other_xml can be used
as a source of hints

dbms_sqltune.import sql profile(sgl_text => cl_sql_text,
profile => ar profile_hints,
category => ’&category',
name => ‘&profile_name’,
force match => &force_matching,
replace => true);

* Note: Randolf Geist gets credit for this idea

it

SQL Profile Scripts (trivial)

sql_profiles — lists profiles (dba_sql_profiles)
sql_profile_hints — lists hints associated with a profile
find_sql_using_profile - (v$sql where sql_profile is not null)
drop_sql_profile - (dbms_sql_tune.drop_sql_profile)
disable_sql_profile - (dbms_sql_tune.alter_sql_profile)
enable_sql_profile - (dbms_sql_tune.alter_sql_profile)
alter_sql_profile - (hame, category, status, description, fixed)

DEMO

it

SQL Profile Scripts (non-trivial)

create_sqgl_profile — uses OTHER_XML to create profile
create_sql_profile_awr — creates profile for plan in AWR history
move_sql_profile — copies a profile to another statement
create_1_hint_sql_profile — creates single line profile

gps.sql — creates a profile with the gather_plan_statistics hint

DEMO

it

SQL Patch Scripts

sgl_patches - lists SQL patches

sql_patch_hints — lists hints associated with a SQL patch
create_sql_patch — prompts for hint and creates SQL Patch
drop_sql patch — drops a SQL patch

DEMO

it

Baseline Scripts

baselines — lists baselines

baseline hints — lists hints associated with a baseline
create_baseline — create baseline on a statement
create baseline_awr — create baseline from awr plan
drop_baseline — drops a baseline

enable _baseline — turn baseline on

disable_baseline — turn baseline off

DEMO

it

Other Related Scripts

unstable plans - shows statements with multi-plans with
significant statistical variance in exec time

whats_changed — shows statements with significant statistical
statistical variance in exec time before and
after a point in time

awr_plan_stats - aggregate execution stats by plan

awr_plan_change - history of plan changes over time

mismatch — shows why cursors invalidated

coe - creates a script to create a SQL Profile
based on C. Sierra SQL-T — useful for moving
Profiles between systems or modifying hints

DEMO

enkitec

The Wrong Tool for the Job?

Maybe:

Certainly I’'m proposing
using Profiles in a way that
was not originally intended.

import_sql_profile is not
documented and could
change (in version 12?).

It’'s easy to convert to
Baselines.

| think the benefits far
outweigh the risks and ...

it

Appendixes

Sanctification
Licensing*

* (with apologies to Jonathan about my spelling)

it

Oracle Sanctions Manual Profiles

SQLT has a script to generate manual SQL Profiles
The script has a catchy name: coe_xfr_sql_profile.sql
Carlos Sierra is the author

See MOS Note: 215187.1 for more details

Or just google “Oracle Sanctions SQL Profiles”

it

Licensing Issues

So Do You Need Tuning Pack?

Licensing rules are a bit unclear (to me)
General Consensus:

SQL Profiles require Tuning Pack

Outlines, SQL Patches, Baselines do not
Validated by CONTROL_MANAGEMENT_PACK_ACCESS=NONE

enkitec

SQL Profiles Licensing Issues

Oracle Tuning Pack

Oracle Tuning Pack provides database administrators with expert performance
management for the Oracle environment, including SQL tuning and storage
optimizations. Oracle Diagnostics Pack is a prerequisite product to Oracle Tuning
Pack. Therefore, to use Oracle Tuning Pack, you must also have Oracle Diagnostics
Pack.

Oracle Tuning Pack includes the following features:

m SQL Access Advisor

s SQL Tuning Advisor

s Automatic SQL Tuning

s SQL Tuning Sets

s Automatic Plan Evolution of SQL Plan Management
= SQL Monitoring

» Reorganize objects

enkitec

SQL Profiles Licensing Issues

Command-Line APIs

Oracle Tuning Pack features can also be accessed by way of database server APIs and
command-line interfaces:

s DBMS_SQLTUNE

m DBMS_ADVISOR, when the value of the advisor_name parameter is either SQL
Tuning Advisor or SQL Access Advisor.

s V$SQL_MONITOR
s V$SQL_PLAN_ MONITOR

m The following report found in the /rdbms/admin/ directory of the Oracle home
directory is part of this pack: sqltrpt.sql.

it

SQL Patches Licensing Issues

There is no mention of SQL Repair Advisor
Nor is there any mention of DBMS_SQLDIAG
So no License (other the EE) is required
Optimizer Group blog post agrees*

* https://blogs.oracle.com/optimizer/entry/additional_information_on_sql_patches

enkitec

References

Maria Colgan. Several Good Posts on the Optimizer Group Blog.
https://blogs.oracle.com/optimizer

Tom Kyte. Pretty much everything he has ever written, but specifically
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11 QUESTION 1D:61313086268493

Jonathan Lewis. Several Posts on Profiles
http://jonathanlewis.wordpress.com/?s=%22sql+profile%22

Kerry Osborne. Several Posts on Profiles
http://kerryosborne.oracle-guy.com/

Randolf Geist. Using Existing Cursors to Create Stored Outlines and SQL Profiles
https://www.blogger.com/comment.g?bloglD=5124641802818980374&postID=1108887738796239333

Notes on Editing Outlines on My Oracle Support (726802.1, 726802.1, 144194.1)

https:support.oracle.com

it

Questions / Contact Information

Questions?

Contact Information : Kerry Osborne

kerry.osborne@enkitec.com
kerryosborne.oracle-quy.com
www.enkitec.com

